Things are not what they appear to be

OSL Data Centre Technology Spring Tour 2011 • Luxembourg, 8/6/2010

Bert Miemietz

OSL Gesellschaft für offene Systemlösungen mbH

"Konsequent zu Ende denken kann man nur mit respektloser Heiterkeit."

"Resolute logical thinking requires disrespectful cheerfulness"

- Gerhard Branstner -

OSL offers data centre solutions for

Storage Networking & Virtualization • Volume Management Clustering • High Availability • Disaster Protection

EMC?

OSL Gesellschaft für offene Systemlösungen mbH

www.osl.eu

VMWare? Others?

How can that be accomplished by a small company?

Just choose a different approach

- it is only software
- strict focus, e. g. concerning platforms (Solaris, Linux)
- sophisticated, modular & open design
- -> reduce to standard interfaces
- -> build your work on top of others
- question common paradigms -> strike new paths
- do both: be doubtful and develop long-term strategies
- deep technological knowledge, arduous work
- no "Enterprise Split Brain" (planning, engineering, QA, service, marketing – all in a small effective team)
- consequent focus on customer needs: listen carefully, think and make a proper effort!
- We do not dominate the market, we just try to adopt to a changing environment together with our customers

15 years ago

And large systems?

15 years ago

And very large systems?

15 years ago

- dedicated server
- dedicated storage

Today

- flexible servers
- centralized storage

Today

Today

Today

Today's Data Centre Infrastructures

Have a look from a different perspective

- the number of (virtual) servers is constantly growing
- mass storage today is extremly centralized
- servers and storage are connected by often complex storage networks, that are of no interest to the application users

The other side of the medal:

- giant mass storage systems that are extremely expensive
- new work profiles: storage administrator, SAN administrator
- overdimensioned storage networks
- increasing interdependencies of load profiles
- "availability trap": better availability of storage infrastructure
 - we are increasingly dependent on that availability
- Performance? What are the decisive factors for storage performance?

OSL Gesellschaft für offene Systemlösungen mbH

Decisive Factors of I/O Performance

The most important performance factors for external RAID systems

- no influence o little influence +/- depends on other factors + strong ++ very strong

Factor	load profile			
Factor	sequential	random		
connection speed (SAN)	+	О		
number of disks	++	++		
parallelism of RAID system (controller etc.)	++	+		
disk attachment type (SATA/SAS)	О	О		
disk type (electro-mech. HD / SSD)	+	+		
rotation speed of disk (emech.)	0	+/- Zahl der Clients		
cache in the RAID system	0	++		
OS of the RAID system	0	+/- genaues Lastprofil		
other techniques (queue mgmt., policies)	О	+/- Lastprofil / Zahl der Clients		

Why not this way?

OSL software enables a different approach

Why not this way?

OSL software enables a different approach

number of disks	++	++
parallelism of RAID system (controller etc.)	++	+
disk type (electro-mech. HD / SSD)	+	+
cache in the RAID system	0	++

Other Effects:

- different system monitoring / direct administrator responsibility (!)
- ease of administration
- availability trap is loosing importance
- built-in separation of load profiles
- often performance gaines / better parallelism
- enormous cost savings

About the Effects of Virtual Machines

A different pattern of data streams / different priorities

OSL Gesellschaft für offene Systemlösungen mbH

www.osl.eu

About the Effects of Virtual Machines

A different pattern of data streams / different priorities

- flexible use of VMs strongly requires a storage network
- we get a higher number of weaker data streams (VMs are not being used because of higher performance)
- a possible load issue results from: a large number of data streams
 - random access patterns
- drive towards standardization / unification

New technical priorities

- IP becomes more and more attractive for storage networks (overall availability, lower costs, sufficient performance)
- random I/O becomes the predominant load profile
- block-I/O becomes more interesting

The Escalation: Cloud Infrastructures

At least cloud infrastructures bring about a new quality

OSL Gesellschaft für offene Systemlösungen mbH

www.osl.eu

"One For All" or: "It Could Be Done So Easily ..."

Advantages and Disadvantages of Unified Storage and Highly Integrated Systems

Unified Storage

The solution to all problems?

- the promise: NFS / CIFS / block-I/O all from a single machine
 - integration of different storage platforms
 - solution of all storage problems
- the method: filesystem-based data organisation
 - integrated RAID features
 - cute details (over-provisioning, snapshots ...)

• the reality:

- often excellent results for NFS / CIFS
- weaker performance with block-I/O (filesystem layout!)
- enormous interdependencies of different client load profiles
- complex skill requirements for the administrator
- poor scalability
- almost no deterministic response times in block-I/O
- in most cases mind-blowing prices, loss of liberty

OSL Gesellschaft für offene Systemlösungen mbH

www.osl.eu

Our alternative draft

Get more by use of standard building blocks

OSL Gesellschaft für offene Systemlösungen mbH

www.osl.eu

Our alternative draft

Where are the differences

- Unified Integrated Storage is not a product but a concept
- the concept is supported by host-based software
- use of standard components
 (good performance, low price, no vendor lock-in)
- almost at-will scalability
- maximum throughput only limited by the network
- high-performance block I/O can be run over Ethernet
- arbitrary isolation of load profiles
- special functions, e. g. bandwidth control
- RAID administration is reduced to simple operations (e.g. disk replacement)
- more advanced functions come in a unified form from the software (e. g. backups / DR / system copies)

OSL Gesellschaft für offene Systemlösungen mbH

Finding the Right Perspective ...

On the Eve of New Storage Concepts

The transition from HD to SSD is just the beginning

	HD	SSD	FeRAM	DDR SDRAM	MRAM
Capacity	> 2 TB	> 512 GB	16 MB (Modul)	> 4 GB (Modul)	
Access	4 ms	0,2 ms	0,05 µs	10 ns	Universal RAM ?
Transfer	140 MB/s	280 MB/s	1,6 GB/s (DDR2)	40 GB/s	I O AVI

The transition from HD to SSD is just the beginning

	equential IO, access time not de		ed by the trans	sition from HD	
Access	4 ms	0,2 ms			
140MB/s 7,2ns/Byte	400MB/s 2G/ 2,5ns/Byte 0,5ns		400MB/s e 2,5ns/Byte	2GB/s 0,5ns/By	
			40Byte		0,548 μs
	Disk htroller Adapter	IV/IAMARV	FC lapter	FC Adapter	0,112 ms
	RAID		8192Byte	Hos	or 0.088ms
240MB/s 4,2ns/Byte	400MB/s 2G/ 2,5ns/Byte 0,5ns		400MB/s e 2,5ns/Byte	2GB/s 0,5ns/By	_
at 140 MB/s at 280 MB/s	about 8900 about 11350	transfers/s transfers/s	ca. 70MB/s ca. 88MB/s		

The transition from HD to SSD is just the beginning

	HD example: What equential IO, access time not co		FeRAM ed by the trans	DDR SDRAM sition from HD t	to SSD?* Universal RAM?
140MB/s 7,2ns/Byte	400MB/s 2GE 2,5ns/Byte 0,5ns/		400MB/s 2,5ns/Byte	2GB/s 0,5ns/Byte	e 13,7ns/Byte
			40Byte		0,548 μs
	risk Disk troller Adapter	N/IAMORV	C apter	FC Ada	112 ms
	RAID		8192Byte	Who'd ha	ave or 38ms
240MB/s 4,2ns/Byte	400MB/s 2GE 2,5ns/Byte 0,5ns/		400MB/s 2,5ns/Byte		2 10,7ns/Byte
at 140 MB/s at 280 MB/s	about 8900 about 11350 a		ca. 70MB/s		

What is making more sense?

- revolutionary new system designs cannot be seen for now
- faster serial interconnects?
- proprietary system architectures?
- combination of "faster and proprietary"?

What is getting shape today – what OSL is working at

- only localy integrated mass storage can deliver break-through performance gains
- challenges:
- integration with external storage
- full control in clustered environments
- make the performance gains useable in "real life" data centre processes

OSL Gesellschaft für offene Systemlösungen mbH

www.osl.eu

Effects of Modern Storage and Virtualisation Technologies - Summary

- Build modern architectures from standard components!
- Speed of the network is not enough!
- Be ready for hybrid architectures!
- Focus on concepts not on hardware!