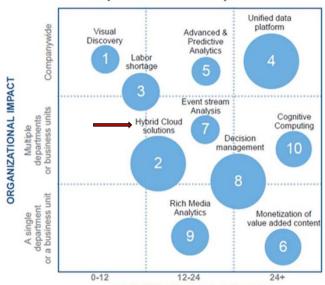


Server today and in the future

September 2015

Fujitsu

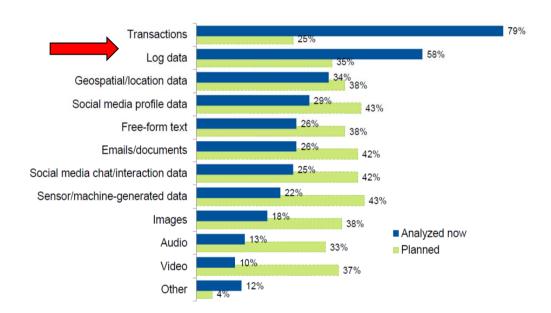
Agenda



- Servers today
 - Fujitsu M10 and PRIMEQUEST (features to solve the demands)
- DC today and upcoming
 - SW defined and cloud-oriented
 - Trends (Example): Silicon photonics
 - Appliances and (hyper) converged systems (integrated systems)

Big Data and Analytics

IDC's Big Data and Analytics Top 10 Decision Imperatives



TIME (MONTHS) TO MAINSTREAM

Note: The size of the bubble indicated complexity/cost to address. Source: IDC, 2014

 Over the next 5 years spending on cloud-based BDA solutions will grow 3x faster than spending for on-premise solutions. Hybrid on/off premise deployments will become a requirement.

Traditional Data Sources Dominate, But Many New Sources Are Planned

Multiple responses allowed
© 2014 Gartner, Inc. and/or its affiliates. All rights reserved.

Gartner.

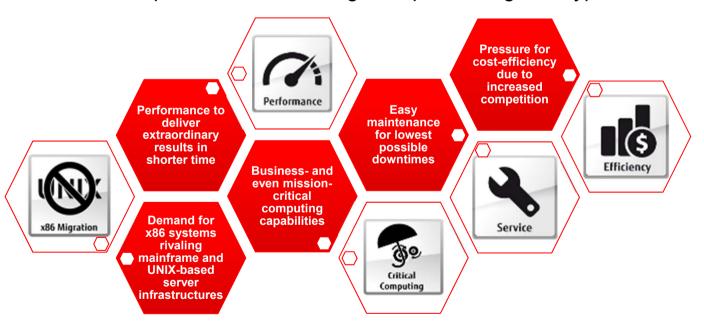
Servers today: Customer Challenges

Increase Productivity

Improve service levels resulting in higher employee productivity

Reduce Risk

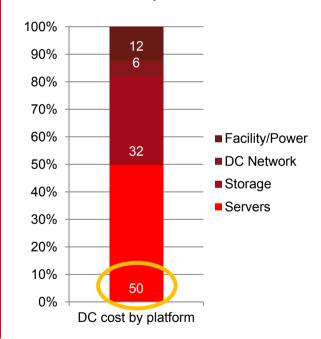
Ensure continued access to critical data and functions


Save Money

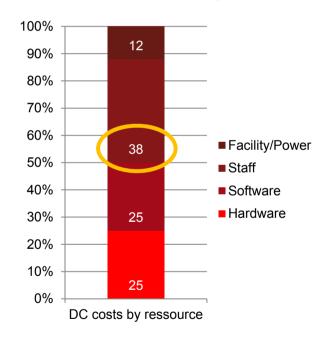
Reduce capital and operation costs to maximize IT investments

Servers today: IT demands

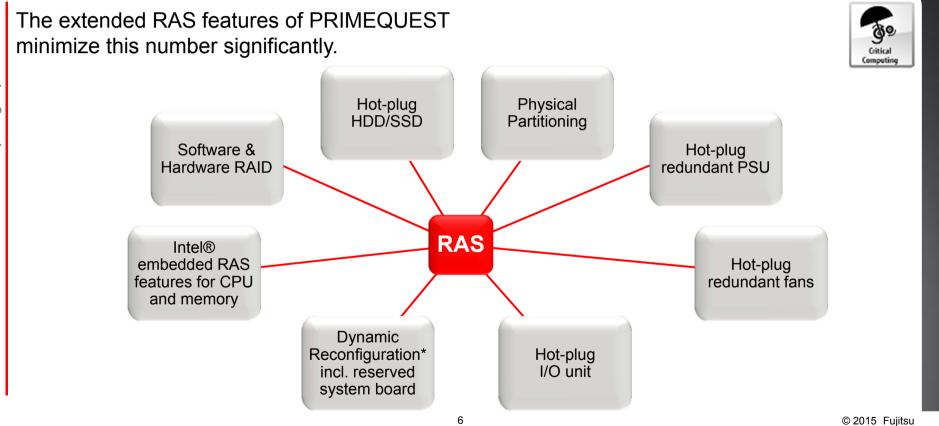
What unites businesses running large scale databases i.e. SAP or Oracle, financial institutions, telecommunication companies, and enterprises processing huge amounts of data in times of IoT and scale-up architectures for big data processing in a hyper-connected world?



Servers today: What does the market say?



The main cost drivers in a data centers are servers and staff. This is where potential can be unlocked most effectively.


Pressure for cost-efficiency due to increased competition

Mission- and business-critical computing capabilities

Servers today: The mission-critical approach

Fujitsu Mission-Critical Heritage with SPARC

Fujitsu's DNA: **60-years** of mainframe development

State-of-the-art technologies

Further evolution of M-series

Evolution of Mission-Critical Servers

- Zero downtime on H/W expansion
- Zero downtime on maintenance
- Zero single point of failure

Ultimate Data Integrity

- ✓ 15× error checkers (over SPARC Enterprise M-series' processor)
- ✓ Robust selfhealing features

2013 Fujitsu M10

1954 Relay Computer

Fujitsu and Oracle's Collaboration

FUJITSU

- SPARC64 processor
- Supercomputer technologies
- Mission-critical technologies

One Big Result

New SPARC Servers Fujitsu M10

Extreme performance increase with Software on Chip developed via Fujitsu and Oracle's collaboration

ORACLE®

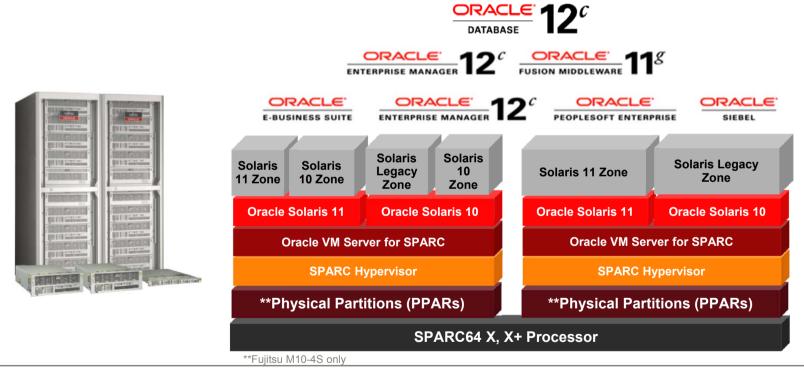
- #1 UNIX OS OracleSolaris
 - #1 Database software
 - Innovative technologies

Fujitsu M10 Systems Product Lineup

- Small to Huge Capacity
- Core Activation
- Building Block Architecture
- Mission-critical RAS
- XSCF System management
- 1 socket
- 3.7 GHz. Max 8 cores
- 3.2 GHz and 2.8 GHz, Max 16 cores
- Max 512GB memory
- Rack mount (1U)

Fujitsu M10-1

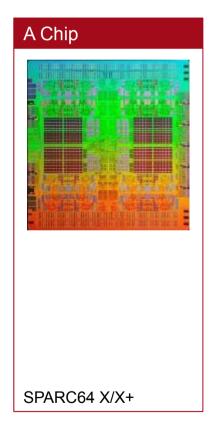
- Max 4 sockets
- 3.7 GHz, Max 32 cores
- 3.4 GHz and 2.8 GHz, Max 64 cores
- Max 2TB memory
- Rack mount (4U)

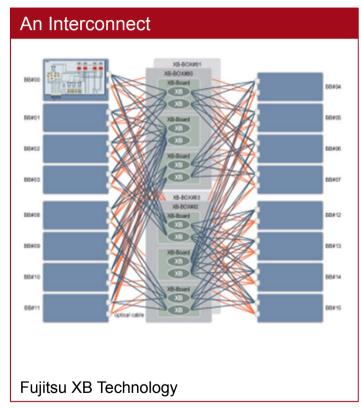

Fujitsu M10-4

Fujitsu M10: Designed to Run Oracle Stack

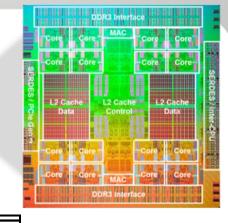
Complete from Infrastructure to applications

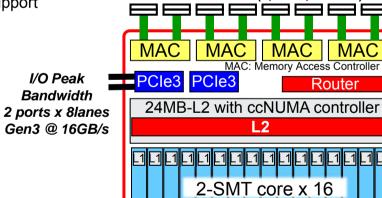
Oracle SPARC Server Portfolio




							-	
Reliable, Sc	alable, Efficien	t, and Secure Sol	aris					
	T4-1	M10-1	T5-2	T5-4	M10-4	T5-8	M6-32	M10-4S
Processor	SPARC T4 2.85 GHz	SPARC64 X+ 3.7 GHz & 3.2GHz & SPARC64 X 2.8 GHz	SPARC T5 3.6 GHz	SPARC T5 3.6 GHz	SPARC64 X+ 3.7 GHz & 3.4 GHz & SPARC64 X 2.8 GHz	SPARC T5 3.6 GHz	SPARC M6 3.6 GHz	SPARC64 X+ 3.7 GHz & SPARC64 X 3.0 GHz
Sockets	1	1	1/2	4	2 or 4	8	32	2 to 64
Max Cores Threads	8/64	8/16 (3.7GHz) 16/32	16/128 32/256	64/512	32/64 (3.7GHz) 64/128	128/1,024	384/3,072	1024/2,048
Max Memory	512 GB	512 GB	1 TB	2 TB	2 TB	4 TB	32 TB	32 TB
Size	2 RU	1 RU	3 RU	5 RU	4 RU	8 RU	Stand-Alone Chassis	4 RU to 80 RU
Entry Price	\$20K	\$22K / \$15.7K / \$9.8K	\$29K / \$44K	\$96K	\$60K / \$41K / \$37K	\$165K	\$427K	\$88K / \$60K (one Building Block)

Fujitsu M10 Hardware Technology


SPARC64 X / SPARC64 X+ Processor Overview Fuittsu


I/O Peak

- **CPU Core and Thread**
 - Max 8 or 16 cores, Max 16 or 32 threads (2 threads/core)
- High CPU Frequency, 64 Socket Scalable Interconnect
 - SPARC64 X up to 3.0GHz / 14.5Gbps (CPU-CPU)
 - SPARC64 X+ up to 3.7GHz / 25.0Gbps (CPU-CPU)
- **Integrated Memory Controller**
 - 4x embedded memory controllers.
 - Directly connected to 4x DIMM slots
 - 1,600MHz/1,333MHz DDR3 DIMM support
 - 100ns load-to-use latency
- **High Speed Interconnect**
 - 5x 14.5GB/s (X) / 25GB/s (X+) interconnect Interfaces
- **Integrated PCIe Controller**
 - 2x PCle Gen3 interface
- Performance (peak)
 - 382GFlops (X) / 474GFlops (X+)
 - 102GB/s memory throughput

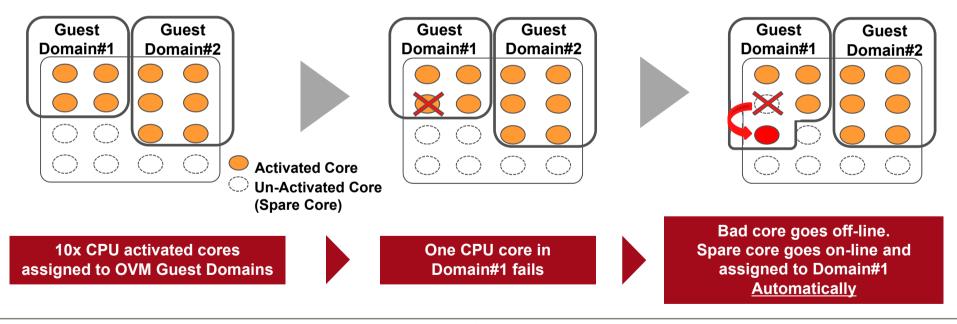
DDR3 DIMMs (1,600/1,333MHz)

CPU-CPU Interconnect: 14.5 Gbps (SPARC64 X),

25.0 Gbps (SPARC64 X+)

Processor Innovation: Software on Chip

Supercomputer Technology to Accelerate Oracle DB

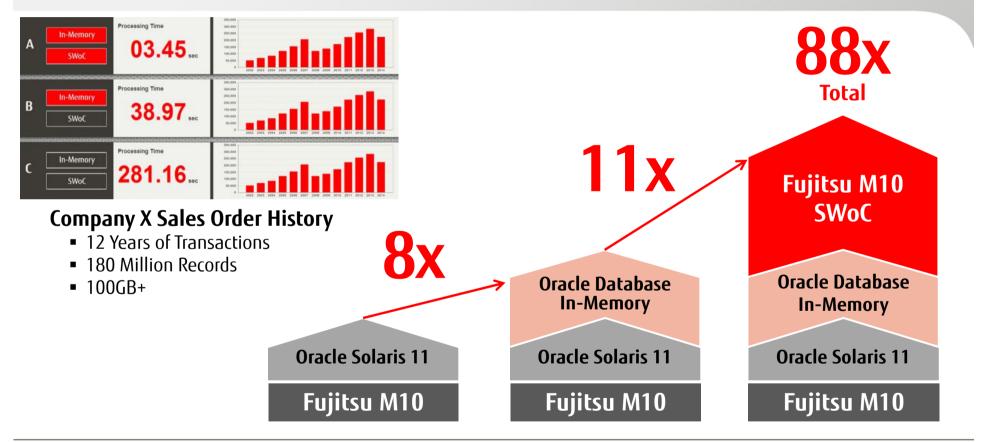

SSL and Database Accelerators Built-In

- Dedicated Encryption/Decryption Engine
 - Supporting cryptographic algorithms:
 AES, DES, 3DES, RSA, and SHA
- Decimal FP ALU (Arithmetic Logical Units)
 - Supporting decimal floating-point based on IEEE Standard (IEEE754) and Oracle Number
- HPC-ACE & SIMD Function (Single Instruction Multiple Data)
- High speed arithmetic processing by four elements in a single instruction (Supercomputer technology)

M10 CPU Core Automatic Replacement

- Active CPU core fails → Un-Activated CPU core automatically allocated
- System stays up & no loss of CPU resources

Fujitsu M10 SWoC Feature Enablement


Built-in performance boost as you move to the latest software levels

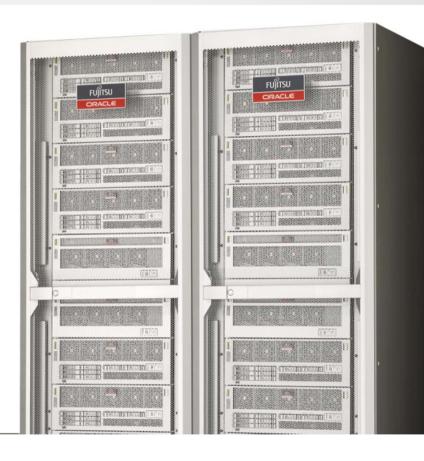
	Feature	Oracle Solaris Level	Compiler	Oracle DBMS
	ced in Encryption	Oracle Solaris 11.1		11gR2, 12c
Compare, Copy functions HASH		Oracle Solaris 11.1	Implemented in Oracle Solaris	11gR2, 12c
		Oracle Solaris 11.1	11.1	12c w/PSE
Decimal ALU		Oracle Solaris 11.1	Studio 12.4	N/A
NUMBER Decompression		Oracle Solaris 11.1	N/A	12c w/PSE
		Oracle Solaris 11.1	N/A	12c + In-Memory
	nced in C64 X+	Oracle Solaris 11.1	Studio 12.4	12c + In-Memory

PSE= Platform Specific Enhancement

Oracle Database 12c In-Memory on Fujitsu M10

Oracle Enterprise Manager Ops Center

Complete Management for Oracle Hardware, OS & Virtualization



- Data Center Discovery
- Virtualization Management
 - Oracle Solaris Zones and Oracle VM for SPARC
- Configuration Management
 - Patch OS, Update Firmware,
 Configuration Compliance
- Operating System Analytics
- Maintenance
 - Health Checks, Remote Management

Best Performance for Business Workloads

Faster memory Throughput

#1 Arithmetic Performance

#1 Application Performance

#1 Scientific Performance

#1 Java Performance

STREAM TRIAD	0 0 0
SPECint_rate 2006	1 1
2-tier SAP SD	1 1
SPECfp_rate 2006	
SPECjbb2005	1

As of Dec 2014

Core Activation Cuts Costs

Software Licensing

You anticipate business growth, but unsure how much, so you buy a 4 socket M10-4S server. Assume software licensing costs: \$20,000 per core annually.

Without core activation, software licensing is \$1,280,000 per year.

Time	Projected Workload	#Cores X \$20K	Cost Savings with Core Activation
Year 1	16 cores	16 x \$20K	\$960,000
Year 2	32 cores	32 x \$20K	\$640,000
Year 3	48 cores	48 x \$20K	\$320,000
Year 4	64 cores	64 x \$20K	0

Key M10 Strengths

Fujitsu M10:

■ Single Thread Performance

Applications that benefit from very strong single thread performance (e.g. batch, DWH, analytics)

■ Scalability Past 32 Sockets

Initial or target environment will be anywhere between 2 and 64 sockets

Granularity

When gradual growth is planned or step-by-step consolidation is needed at the core and/or socket level

■ Capacity on Demand with Core Activation and Building Block Architecture

When not all cores initially need to be activated, due to application requirements or licensing

■ Mainframe-class RAS

For customers who know and expect Fujitsu RAS

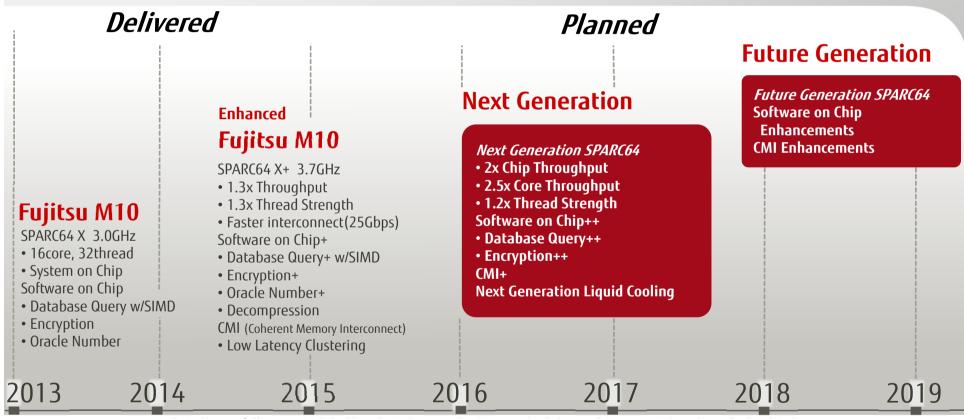
■ Dynamic Reconfiguration

Implementations requiring Hot Swap and/or Hot Add/Delete of hardware resources

Partitioning

Implementations that require hardware isolation through physical partitioning

■ Physical Partitioning Granularity


M10-4S Building Blocks: Start from 2 sockets and grow to 64 sockets with up to 16 physical partitions

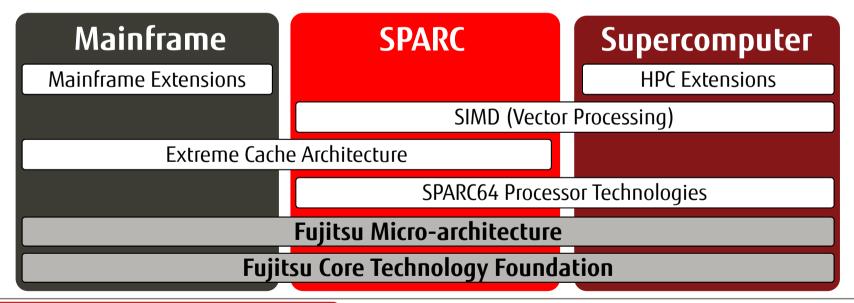
■ Huge I/O Scalability

Lots of consolidation needs lots of PCIe expansion. Unique M10 PCI Expansion Unit adds slots to all models (928 slots max)

Fujitsu M10 Roadmap

 $\underline{http://www.fujitsu.com/global/products/computing/servers/unix/sparc/key-reports/roadmap/index.html}$

Fujitsu Technology Ecosystem


Mission Critical and HPC product families benefit from collaborative technology investment Benefits customers:

Innovation Cross-Pollination

Lower Cost

Extreme Performance

High Reliability

FUJITSU Server PRIMEQUEST

Ambidextrous, rack-optimized enterprise systems making Mainframe/UNIX available on a x86-platform for more operational efficiency while maintaining critical computing abilities

PRIMEQUEST 2800 B2

Grow your business with vast performance and business-critical reliability on x86

PRIMEQUEST 2400 E2

No time for downtime

PRIMEQUEST 2800E2

Critical workload processing revolutionized

FUJITSU PRIMEQUEST 2x00E/B2 at a glance

Big-data and inmemory computing

Advanced RASfeatures

Innovations for critical applications

Faster to business results thanks to Intel® Xeon® E7-8800 v3 processors and DDR4 memory – the right performance for database applications, telecommunication infrastructures and real-time analytics

Resilience at its best with highest redundancy and failure detection as well as failure correction taken to a new level in an x86-industry standard system The Extended Partitioning* function allows you to allocate resources within one system as required and to utilize resources optimally while maintaining the necessary fault tolerance

Dynamic Reconfiguration* allows to reconfigure the system while it is running. Stay flexible and react to changes in workload without downtimes

Performance to deliver extraordinary results in shorter time

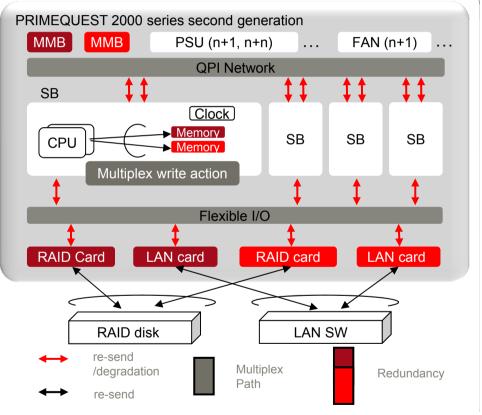
Performance ≠ Bottleneck

In-memory databases have innate risks...

...but PRIMEQUEST can help!

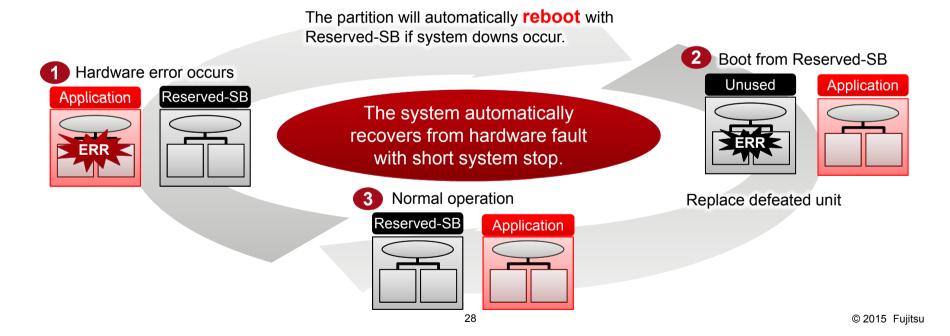
If in-memory database computing is distributed over several single nodes, the entire system set-up is very complex

PRIMEQUEST is one system which is capable of consolidating up to 8 systems in 1


In the unlikely event of a server outage, all data saved in memory are lost

PRIMEQUEST has extended RASfeatures and self-healing capabilities

Full Redundancy within PQ systems

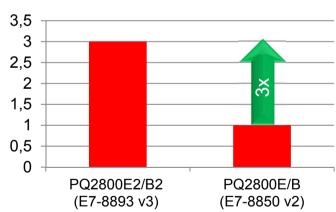

- Fully redundant and fully multiplex for almost all the components
- Even when hardware problems are detected, the system continues operation
 - Memory mirroring, Inter CPU bus, CPU-IO bus
 - Faulty parts can be isolated and the system remains active

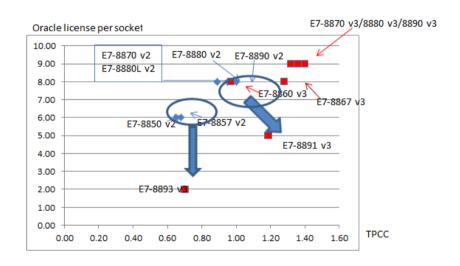
Reserved System Board

Unique Reserved System Board feature decreases system down time in case of hardware failure. The partition will automatically reboot with Reserved-SB in case of failure.

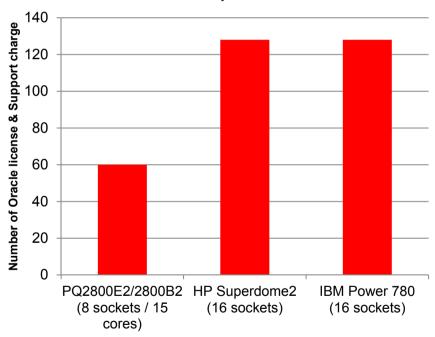
Type of Dynamic Reconfiguration Operations

Pressure for cost-efficiency due to increased competition


PRIMEQUEST and its facets of efficiency



Triple OLTP performance per Oracle database license and support charge with PRIMEQUEST 2000 series 2nd Generation


Reduction for Oracle DB Charge

(Consolidation and speed up)

- 8 socket models can halve Oracle license & support charges
- In comparison with HP Superdome2 and IBM Power 780
 - Under similar performance
 - 128 cores for HP Superdome2
 16s and Power 780
 - 120 cores for PQ2800E

Oracle License & Support Charge Comparison under similar performance

PRIMEQUEST and its facets of efficiency

Scale-out or scale-up? A question many enterprises raise. But what speaks for Scale-up?

1 Scale-up is not prohibitively expensive anymore. x86-system design uses the same components for a better trade-off in PRIMEQUEST servers

2 Scale-out leads to more reliability: Not necessarily. PRIMEQUEST delivers outstanding uptime with a leading feature-set to be failure-resilient – all in one box.

3 Scalability is limited. Sure, there is a natural barrier within one chassis. Nevertheless, even for future demands, up to four system boards, up to 144 cores and 12 TB of memory are ideal for in-memory computing and leave enough headroom

Agenda

- Servers today
 - Fujitsu M10 and PRIMEQUEST (features to solve the demands)
- DC today and upcoming
 - SW defined and cloud-oriented
 - Trends (Example): Silicon photonics
 - Appliances and (hyper) converged systems (integrated systems)

Worldwide CIO view for Technology Priorities

Fujitsu ETS: <u>Top Technology Priorities for 2015</u>, Japan vs. Global

Japan	Global
1. Cloud	BI/Analytics
2. ERP	Infrastructure and Data Center
BI/Analytics	-3_ Cloud
4. Mobile	4. ERP
5. Infrastructure and Data Center	5. Mobile
6. Legacy Modernization	6. Digitalization/Digital Marketing
7. Security	7. Security
Digitalization/Digital Marketing	8. Networking, Voice and Data Communications
9. Networking, Voice and Data Communications	9. CRM
10. CRM	10. Industry-Specific Applications
11. Risk Management	11. Legacy Modernization
12. Applications Development	12. Enterprise Applications

Excerpts and summary from Gartner 2015 CIO Agenda: A Japan Perspective, 30 January 2015 G00272417.

Drivers For Introducing A Private Cloud

Want to increase agility of IT

Want to improve service levels of IT

Want to be prepared for mergers & acquisitions

Want to be prepared for new business models

IT Organizations

Want to build on significant investment in infrastructure

Want to retain control of assets

Want to increase degree of automation

Want to be prepared for hybrid cloud approach

Private Cloud Infrastructure

Services in the Cloud

Cloud offerings

Business Process as a Service (BPaaS)

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (laaS)

36

Datacenter

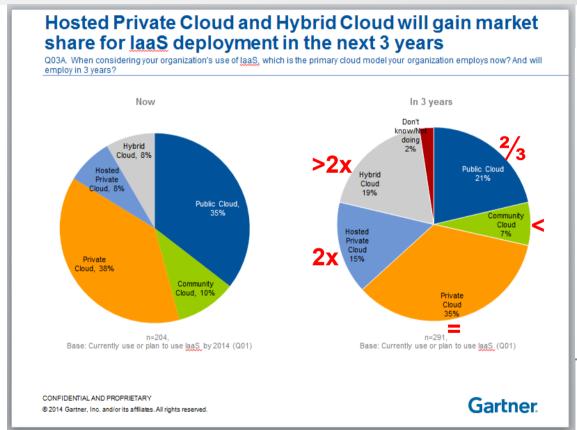
Private Cloud

Community Cloud

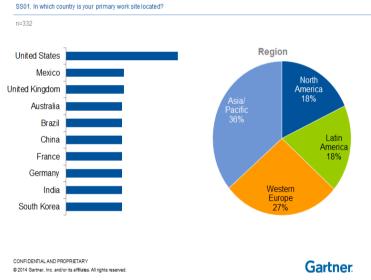
Public Cloud

Hybrid Cloud

Drivers For Introducing A Hybrid Cloud


Hybrid Cloud* enables companies to

- increase flexibility of choice for sourcing options
- balance isolation, cost and scaling requirements
- easily introduce new functionality quickly and more flexibly
- improve resiliency and disaster recovery by using multiple providers


*Gartner defines a hybrid cloud computing service as a cloud service that spans both private and public cloud implementations, or both on-premises private and off-premises private or public cloud implementations.

Private & Hybrid Clouds dominate in IaaS

Respondent Profile: Geography

Example: Oracle Solaris 11

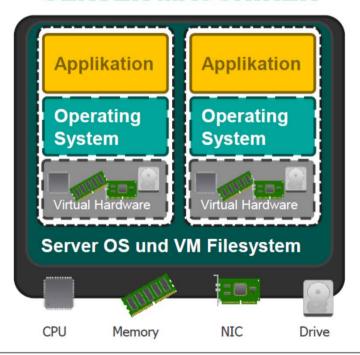
Reliable, Scalable, Efficient, Secure,

Highly Available, Secure Platform for Enterprise Apps

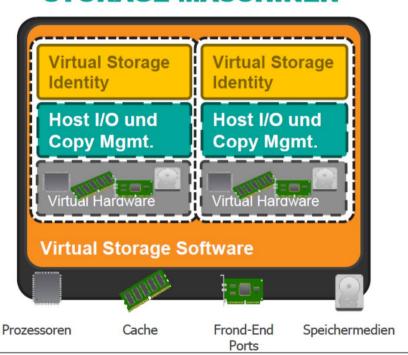
- Predictive self healing
- ZFS data integrity
- Low overhead snapshots
- End to end encryption
- Application Clustering
- Compliance reporting
- DTrace observability

Solaris 11

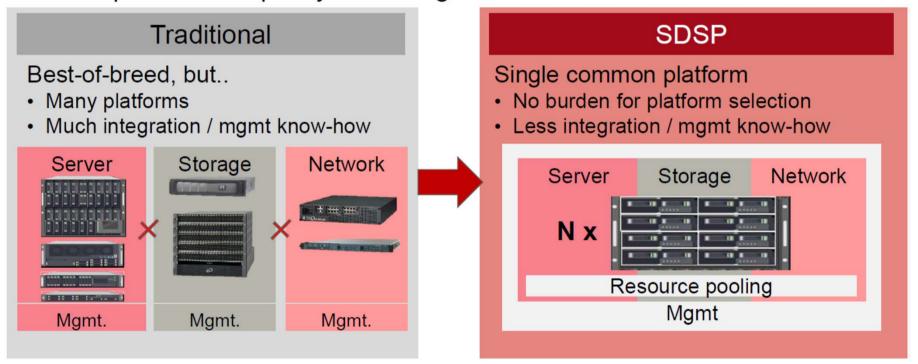
Large-scale Cloud Management


- Zero overhead Server, Storage, Network virtualization
- Immutable zones
- Fast, fail safe life cycle management
- Comprehensive cloud management solution

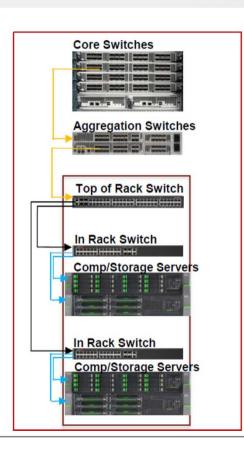
Mission Critical Meets Cloud


SW defined DC

VIRTUELLE SERVER MASCHINEN

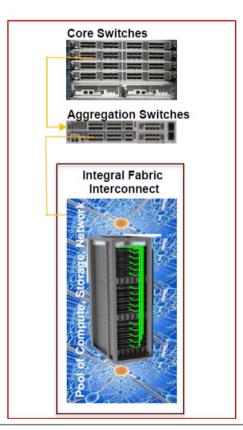

VIRTUELLE STORAGE MASCHINEN

SW defined DC



SDSP provides simple system integration

SW defined DC: New architectures

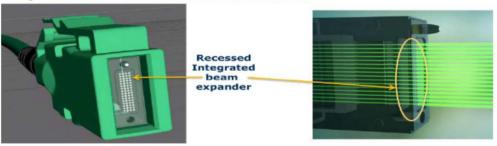

Today:

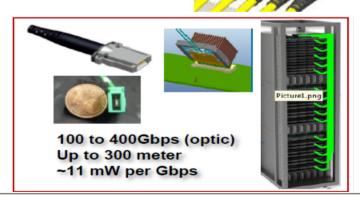
Compute/Memory/IO in one chassis

Tomorrow:

Ressource-Pools of Disaggregated Servers in Racks

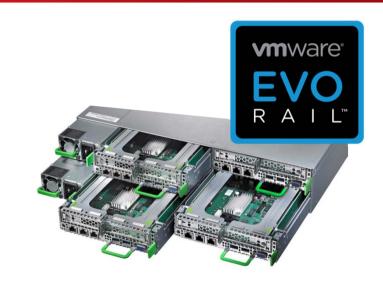
> "Rack Scale" Instead of "Single Chassis Scale"




Future Trends: Silicon Photonics (SiP)

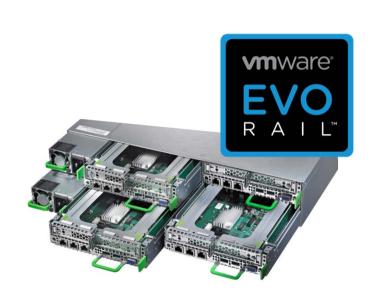
- Features of optical transmission in / across Servers
 - Universal physical medium for all kinds of networking technologies (PCIe, Eth)
 - 25Gbs/fiber, 64 fiber/ cable, 1.6Tbs/cable (i.e. PCIe 3.0 x16 today: 15,7Gbs)
 - Cable: thin, flexible; Connectors: highly scalable/stackable, high density
 - Low power vs. copper/electrical transmission (energy efficient)
 - Long distance (up to 300m)

Expanded Beam Interconnects



Welcome to the new edge of hyper-converged infrastructures

FUJITSU Integrated System PRIMEFLEX for VMware EVO:RAIL



Linear scalability and high performance

Benefits of PRIMEFLEX for VMware EVO:RAIL

- Trusted foundation hyper-converged
 IT infrastructure based on proven
 technology
- Infrastructure at the speed of business
- Easy to obtain & single point of contact
- Ready-to-work in minutes
- Simplified design with predictable sizing & scaling

Oracle Reference Architectures (RA) - Exadata

- The best platform for all Oracle Database workloads
 - Warehousing → OLTP → Consolidation → In-Memory Database
- Latest, most advanced hardware
 - Fully scale-out servers and intelligent storage with unified
 InfiniBand connectivity and PCI flash
- DATABLE IN AUDION.

 DATABLE IN AUDION.

 DATABLE IN AUDION.
- Unique software that maximizes the Oracle Database
 - Database optimized compute, storage, and networking software dramatically improves performance and cost
- Standardized, optimized, hardened end-to-end
 - By the core Oracle RDBMS development team

Source: Oracle

Fujitsu CE Reference Architectures (RA) - M10

Flash-IO

Operating Process automation

Appl. Enhancement

Application
Oracle DB 12c

Appl. Enhancement RAC

OS Enhancement Veritas HA

OS Enhancement
Oracle HA

Operating System
Solaris

Virtualization OVM

HW-Expansion PCle Exp. Box

Backup-HW

Backup-HW

Tape

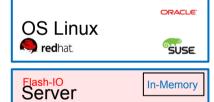
ETERNUS CS

Server FJ SPARC M10

Storage ETERNUS DX

Fujitsu CE Reference Architectures (RA) – PQ (PY)

Operating Process automation


Ca

Appl. Enhancement

Application
Oracle DB 12c

Appl. Enhancement RAC

OS Enhancement Veritas HA

PRIMEQUEST

Virtualization OVM

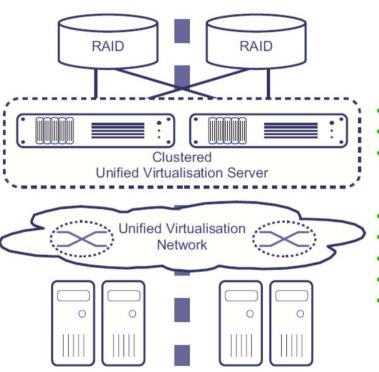
HW Enhancement Partitioning, RSB

HW-Expansion
PCIe Exp. Box
Backup-HW

Flash-IO

Storage ETERNUS DX

ORACLE!


Backup-HW Tape

ETERNUS CS

48

OSL Unified Virtualisation Environment

- · Einfaches Spiegeln von VMs z. B. für Backup to Disk/Tape
- · Restorefreies Instant Recovery für VMs
- Redundante Netzwerkanbindung für Gastsysteme über eine einzige VNIC, daraus resultierende einfachste Handhabung der gesamten Netzwerkkonfiguration einschl. Routing im Gastsystem.
- · Einfache und schnelle Provisionierung neuer VMs über Cloning
- Zentrale Netzwerkkonfiguration
- Mögliche Verwendung administrationsfreier Netzkomponenten
- Netzseitige Trennung der VMs
- · Zentrale, hochverfügbare Routeranbindung via UVS

shaping tomorrow with you